Section 2.1

Definition of Tangent Line with Slope \boldsymbol{m} : If f is defined on an open interval containing c, and if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m
$$

exists, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at the point $(c, f(c))$.

1) Find the slope of the graph of $f(x)=3 x+5$ at the point $(-1,2)$.
2) Find the slopes of the tangent lines to the graph of $f(x)=2 x^{2}+4 x-1$ at the following points:
a) $(1,5)$
b) $(-1,-3)$

Definition of the Derivative of a Function: The derivative of f at x is

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists. For all x for which the limit exists, f^{\prime} is a function of x.
3) Find the derivative of $f(x)=2 x^{2}-x+1$.
4) Find $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$. Then find the slope of the graph of f at the points $(1,1)$ and $\left(2, \frac{1}{2}\right)$.

Alternative Form of the Derivative: The derivative of f at c is

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

5) Use the alternative definition of the derivative to show that the function $f(x)=|x-1|$ is not differentiable at $x=1$.
6) Find the derivative of the function $f(x)=x^{1 / 5}$ at the point $(0,0)$. What can you conclude about the slope of the tangent line at that point?
7) Give an example of a function $f(x)$ that is continuous at some point $(c, f(c))$ but not differentiable at that point.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz:\#2, 10, 18, 34, 66, 76, 89

